Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Carbohydr Polym ; 295: 119818, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1914200

ABSTRACT

Heparin, an old but first-line anticoagulant, has been used over a century. It is a heterogeneous, linear, highly sulfated, anionic glycosaminoglycan with a broad distribution in relative molecular weight and charge density. These structural properties allow heparin to selectively interact with multiple proteins, leading to heparin's various pharmacological functions, such as anticoagulant, anti-viral, anti-tumor and anti-inflammatory activities. Clinical data suggest that unfractionated heparin or low molecule weight heparin could decrease mortality in COVID-19 patients with sepsis-induced hypercoagulation through the anticoagulant, anti-viral and anti-inflammatory activities of these drugs. Thus, the non-anticoagulant activity of heparin has again aroused attention. This review highlights recent advances in the preparation of heparin-derived drugs and clinical research on its non-anticoagulant properties over the past decade, to further the development and utilization of these important drugs.


Subject(s)
COVID-19 Drug Treatment , Heparin , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anticoagulants/chemistry , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Heparin/chemistry , Heparin/pharmacology , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Humans
2.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1664751

ABSTRACT

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Subject(s)
Anticoagulants/pharmacology , Aptamers, Nucleotide/pharmacology , Blood Coagulation/drug effects , Factor V/antagonists & inhibitors , Factor Va/antagonists & inhibitors , Amino Acid Sequence , Anticoagulants/chemistry , Anticoagulants/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Base Pairing , Binding Sites , COVID-19/blood , Cell Membrane/chemistry , Cell Membrane/metabolism , Factor V/chemistry , Factor V/genetics , Factor V/metabolism , Factor Va/chemistry , Factor Va/genetics , Factor Va/metabolism , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Humans , Immune Sera/chemistry , Immune Sera/metabolism , Models, Molecular , Nucleic Acid Conformation , Protamines , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , SELEX Aptamer Technique , Substrate Specificity , COVID-19 Drug Treatment
3.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1273463

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.


Subject(s)
COVID-19/pathology , Heparan Sulfate Proteoglycans/metabolism , SARS-CoV-2/metabolism , COVID-19/virology , Heparan Sulfate Proteoglycans/chemistry , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Sulfotransferases/metabolism , Virus Diseases/drug therapy , Virus Diseases/pathology , Virus Diseases/virology , Virus Internalization/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL